首页> 外文OA文献 >Classification of fresh edible oils using a coated piezoelectric sensor array-based electronic nose with soft computing approach for pattern recognition
【2h】

Classification of fresh edible oils using a coated piezoelectric sensor array-based electronic nose with soft computing approach for pattern recognition

机译:使用基于涂层压电传感器阵列的电子鼻和软计算方法对新鲜食用油进行模式识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An electronic nose based on an array of six bulk acoustic wave polymer-coated piezoelectric quartz (PZQ) sensors with soft computing-based pattern recognition was used for the classification of edible oils. The electronic nose was presented with 346 samples of fresh edible oil headspace volatiles, generated at 45°C. Extra virgin olive (EVO), nonvirgin olive oil (NVO) and sunflower oil (SFO) were used over a period of 30 days. The sensor responses were visualized by plotting the results from principal component analysis (PCA). Classification of edible oils was carried out using fuzzy c-means as well as radial basis function (RBF) neural networks both from a raw data and data after having been preprocessed by fuzzy c-means. The fuzzy c-means results were poor (74%) due to the different cluster sizes. The result of RBF with fuzzy c-means preprocessing was 95% and 99% for raw data input. RBF networks with fuzzy c-means preprocessing provide the advantage of a simple architecture that is quicker to train.
机译:基于六个软声波聚合物涂层压电石英(PZQ)传感器的阵列的电子鼻具有基于软计算的模式识别,该电子鼻用于食用油的分类。向电子鼻展示了在45°C下产生的346种新鲜食用油顶空挥发物样品。在30天内使用了特级初榨橄榄油(EVO),非初榨橄榄油(NVO)和葵花籽油(SFO)。通过绘制主成分分析(PCA)的结果来可视化传感器的响应。从原始数据和经过模糊c均值预处理的数据中,使用模糊c均值以及径向基函数(RBF)神经网络对食用油进行分类。由于聚类大小不同,模糊c均值结果差(74%)。对于原始数据输入,采用模糊c均值预处理的RBF结果为95%和99%。具有模糊c均值预处理的RBF网络提供了易于训练的简单体系结构的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号